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REAL OPTION VALUE 

 

CHAPTER 8   SCALE OPTIONS 

 

In the previous chapters, only a few subsequent management actions after the 

initial investments are considered in the real option format.  Now we allow several 

types of management reaction to exogenous changes in value, price, operating 

cost, investment and scale costs, and to other factors. 

 

8.1   SCALE MANAGEMENT ACTIONS 

 

What is the optimal state (normal operations, contract, suspend and maintain, 

revert to normal or reduced service, abandon) given current (or estimated) profits 

for an asset owner, when future profits are variable?  What is the optimal 

investment timing for a prospective asset owner, when there are several feasible 

state alternatives and irrecoverable costs of making these choices?  The 

conventional methodology is to follow the microeconomic theory of optimal 

investment and identify the corresponding Marshallian (net present value) triggers 

for entry and exit based on net present values. An alternative is to solve the state 

and investment problems within a real options methodological framework. 

 

Entry and exit (or abandon and scrap) opportunities are present in varying degrees 

in most industries.  The classical examples are from shipping, where a prospective 

shipowner acquires an option to build (usually a ship type consistent with other 

owner characteristics or operations); then decides whether to exercise, sell or let 

expire that building option; once operational, the shipowner then has the option to 

reduce operational expense by slow sailing or mothballing if freight rates fall 

below operating costs, with the option to revert to “full service” operations, or 

scrap, if rates fall even more.  Property downsizing problems and opportunities are 

created by a combination of low rents, low occupancy and high maintenance or 
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operating costs for a property with fixed capacity.  Examples are a hotel where the 

demand is seasonal; it may be feasible to operate at reduced service costs, before 

eventually closing the hotel.  Cold weather climate seaside resorts are often 

completely closed and maintained during the winter season, rather than 

abandoned.  Real estate in depressed markets or depressed areas or disaster places 

are sometimes boarded-up, and eventually if there is no recovery, abandoned or 

converted to other uses. Speculative office buildings without firm tenancies are 

sometimes constructed during up market cycles, but during down or very uncertain 

markets are left vacant.
1
 Football stadium net income is dependent on the product 

of average ticket prices times tickets sold.  When net income less costs becomes 

significantly negative, perhaps game or season cancellations are warranted.  

Airlines may shrink capacity, renegotiate employee costs, and reduce ticket prices 

when loads decline, seasonally, cyclically or suddenly.  Natural resources (mines, 

petroleum) are brought into production, sometimes allowing for expansion, but 

more commonly at an appropriate initial maximum scale, which declines over time 

as mining seams become stretched, or petroleum pressure declines. Some mines 

and some petroleum production facilities can be contracted to save cost, but 

usually facilities are closed and maintained.  The facilities might be re-opened if 

commodity prices increase and so exceed operating costs. 

   

The classical models for operating and entry/exit options in entities with fixed 

capacity include Mossin (1968), Tourinho (1979), Brennan and Schwartz (1985) 

and Dixit (1989)
2
.  These authors assume various stochastic processes for copper 

prices or shipping freight rates, as well as different possibilities and bounds of 

management actions.  Assuming shipping revenues follow a stationary discrete 

random walk, Mossin (1968) derives optimal triggers for ship mothballing and 

reactivation.  Tourinho (1979) provides a closed-form solution for perpetual entry 

and exit options, when prices have zero expected drift, but there are possible 

option holding costs (maintenance or lease costs on undeveloped petroleum 

                                                 
1
 Centrepoint in London is a famous example. 

2
 Some of these models are summarized and applied in Dixit and Pindyck (1994). 
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reserves).  Brennan and Schwartz (1985) assume that output prices follow a 

geometric Brownian motion process, but consider only investing in and operating 

a mine, or closing and maintaining, or abandonment.  Dixit and Pindyck (1994), 

incorporating Dixit (1989), consider investing, mothballing, reactivation or 

abandonment; the order of options is from idle to active, with the exercise prices 

consisting of the initial construction costs, mothballing, reactivation and  scrapping 

costs. Other authors have allowed for restricted reversibility, diminishing 

production capacity over time, redevelopments, multiple switches, and investment 

lags.  

  

Assume that the annual revenue= price (“P”) per the initial investment cost (which 

for property might be annual rent times available space times occupancy) is 

viewed as stochastic, and other costs such as investment or abandonment are 

deterministic or constant. Then appropriate and sequentially ordered management 

actions are considered after the initial investment.   

 

In section 8.3.1 a firm converts from being idle (with, however, a proprietary 

option to build), to investing in and operating a facility. If P subsequently falls, the 

next section 8.3.2 considers the option of abandonment, or switching to an 

alternative use.  In section 8.4, if, after the initial investment, P falls, there is an 

option to contract, reducing costs (and reducing services and gross profits).  If P 

then increases, the next option is to revert to full service.  If P falls instead, the 

next option is abandonment, or switching to an alternative use.  Thus up to four 

options are considered, each with trigger prices, exercise costs, and usually 

different gross profits and operating costs in each state.  Other authors (see 

Paxson, 2005) consider even more management options (see Figure 8.9). 

 

8.2.  DETERMINISTIC ENTRY/EXIT INDICATORS 

 

Consider a single discrete project with sunk investment cost K, and operating cost 

(entirely variable) C per unit of time. Define the output flow of the project as a 
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unit, so the revenue for the project is simply the output price P.  The optimal 

decision rule consists of two triggers PK and PA, with PK>PA such that the 

investment should be made if P rises above PK and abandoned if P falls to or 

below PA.  

 

Suppose that the firm does not have an investment in place and that it believes that 

P will never change after making the investment following Marshall (1890). It will 

invest if WK =P>(C + rK).  The right-hand side is the annualised full cost of 

making (rK) and operating (C) the investment.  Suppose now that a firm has such 

an investment in place and that the price falls to a new level P, where the firm 

believes it will persist forever. The firm will abandon if WA =P<C.  So the full cost 

serves as the entry trigger PK and the variable cost as the exit trigger PA.  

 

Hysteresis (delay in reactions between investment and abandonment) can be 

explained by this theory.  Suppose the price is initially between C and C + rK. If P 

increases to a level above C + rK, the firm will invest, following the Marshallian 

deterministic investment rule.  Then after making the investment, even P falling to 

its original level would be insufficient to induce abandonment. Hysteresis occurs 

within the range of C and C +rK.   

 

One example of problems of deterministic investment rules is the role of 

expectations of the price process.  Suppose P is expected to be mean reverting over 

the long run to P* (between C and C + rK).  Now a price of C + rK would not  

suffice to induce investment. PK has to be higher than C + rK, so above normal 

prices for a while can compensate for below normal prices that might eventually 

follow. 

 

8.3   STOCHASTIC MODEL  

 

In order to formulate an appropriate framework for the model, a number of 

assumptions-restrictions need to be imposed.  It is assumed that there is a single  
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factor P (price per investment scale) which follows a geometric Brownian motion 

stochastic process: 

 dzdt
P

dP
PPP   )(                                       (8.1)                     

where P is the drift rate over time, δP is the asset yield or convenience yield, P is 

the instantaneous standard deviation of the P disturbance, and dz is the 

standardized Wiener process.  All of the costs involved are known and constant, 

and the riskless rate of interest (r) is fixed. Moreover, the options to alter states are 

perceived to be perpetual, since the asset is assumed to last forever.  Finally, the 

investment cost represent costs of investing in a newly built asset, ignoring taxes 

and subsidies, and is considered irrecoverable, as are the one-off costs of existing 

(abandonment, scrapping or switching uses, usually positive costs in the former 

case, negative costs in the latter).   

 

It is assumed that the stochastic evolution of P can be perfectly replicated from 

continuously trading in securities (with no transaction costs and perfect capital 

markets), and that portfolios of such securities are perfectly correlated with dz.  

(There are a wide variety of traded securitizations of gross profits from some types 

of assets, including hotels and properties.)  The total expected rate of return on 

holding such replicating portfolios is  = r- , where  is the expected asset yield 

(or convenience yield on commodities).  A contingent claim on P with the given 

profit flow will earn the same as the replicating portfolio, and thus the net position 

of a long position in the contingent claim and a short position of V’(P) (the first 

derivative of the function with respect to P) in the replicating portfolio will be 

riskless and so earn the riskfree rate of return. 

 

The notation is as follows: 

Input Variables  

 

P = annual price per unit productive capacity, K; 

C = annual operating cost; 
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K = investment cost;  

A = abandonment cost (this cost may be negative, if the asset has an         

alternative use value in excess of demolition or conversion costs); 

r, , and , are the riskless rate of interest, asset yield (net cost of carry
3
), and 

volatility, respectively, (assumed constant across states and time). 

 

Output Variables: 

 

β1,2  = equations 8.6 and 8.7; 

 

PK     = P threshold that justifies initial investment; 

 

PA     = P threshold that justifies abandonment; 

 

In many cases K, A >0 is required as a constraint, to rule out a “money making 

machine” of rapid cycles of investment and abandonment.  

 

Making an investment is like exercising an option, with the cost of the investment  

equal to the strike price of the option.  Typically, the asset that is acquired by 

exercising the option to invest includes another option, namely to abandon the 

investment and revert to the original situation.  There are two interlinked option 

pricing problems. 

 

In a stochastic model allowing for both investment and abandonment, there are 

two differential equations that the valuation functions must satisfy: 

 

IDLE                                       

0)()()()( 000

22
2

1  PrVPVPrPVP                                    (8.2)                                   

  

 

                                                 
3. See Dixit and Pindyck (1994) (pp. 114-124) for a discussion of the conditions under which =r-

, so that  would be considered the rate of return shortfall on the gross profits drift, also deemed 

the net cost of carry.  Note that the return on the firm V(P) with the embedded options to change 

states is assumed to be equivalent to the return on any replicating portfolio.  Note some other 

authors require a specific risk aversion coefficient. 
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ACTIVE 

     0)()()()(22

2
1  CPPrVPVPrPVP

KKK
     (8.3) 

 

The solutions for each of these equations are: 

 

1

10 )(


PAPV                                                                                                     (8.4)  

 

rCPPBPBPV
K

//)( 21

21
 

                                             (8.5) 

 

The general solution for each state is of the form of some constant (to be 

determined) times P to the power of 2,1  given by: 

22

2
122

2
1

1 /2]/)[(/)(  rrr      >1                                  (8.6) 

 

22

2
122

2
1

2 /2]/)[(/)(  rrr     <0                                   (8.7) 

Each of the actions must meet value matching and smooth pasting conditions.   

 

8.3.1 ENTRY ONLY 

 

In the one option framework, where there is no abandonment option, or where (C-

rA)<0 that is the operating cost is always less than the annualized cost of 

abandonment, the option to invest will be exercised when the investment option is 

equal to the value of the optimal investment trigger less the operating cost less the 

investment cost, or 1

1



KPA K
r

CPK 


                                                            (8.8)   

 

Assuming that V(P) is continuous and smooth at the critical exercise trigger PK , the 

first derivative of equation (8.8) with respect to PK  is  .
11

11
1


 




KPA              (8.9) 

Simplifying and and rearranging equations (8.8) and (8.9), the simple 

investment option solution is equation (8.4), with  
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



)(

11

1 K
r

C
PK 


        and 

1
1 



K

K

P

K
r

CP

A



  .                                    (8.10)                      

1

1

0 1 .K

K

P C P
ROV A P K

r P







  
      

        (8.11) 

8.3.2 ENTRY and EXIT  

 

Where there is the possibility of both entry (investment) and abandonment (exit at a 

cost A), represented by both equations (8.2) and (8.3) above, the solution for 

equation (8.3) is equation (8.5) except that B1 equals zero, since it is assumed that 

once the price goes to zero, there is no longer an investment opportunity.  

 

rCPPBPVK //)( 2

2  
                                                             (8.12) 

 

The first term of equation (8.12) represents the value of the option to abandon, 

whereas the other two terms represent the perpetual net value of operating the 

asset.  Now, there are four unknowns that need to be determined, namely the two 

optimal thresholds KP  and AP , and the two option value coefficients 1A  and 2B . 

At the optimal entry point KP , the value-matching and smooth pasting conditions 

need to be satisfied in addition to equations similar to equations (8.8) and (8.9).  

The optimal abandonment threshold AP must satisfy: 

 

APVPV AAK  )()( 0                 )()( 0 AAK PVPV                                   (8.13) 

 

After substitutions and simplifications, there are four equations to be solved 

simultaneously. 

0//21

21  KrCPPBPA KKK                                                             (8.14) 

0/1
1

22

1

11
21 
  

KK PBPA                                                                     (8.15) 

0//21

21  ArCPPBPA AAA                                                           (8.16) 

0/1
1

22

1

11
21 
  

AA PBPA                                                                  (8.17) 
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When (C-rA)<0, the solutions (shown in the Appendix) for the four equations are: 

)(
1

1

1 rKC
r

P
K










        (8.18) 

2

2

[ ,0]
1

A AP MAX W
r

 






 
                   (8.19) 

rKCWK            (8.20) 

]0),[( rACMAXW
A

         (8.21) 

The Marshallian trigger prices for investment and abandonment are WK and WA.  

The former is the usual full cost but the latter differs from variable cost C, because 

we now have abandonment costs.  At a price between these limits, an idle firm 

does not invest and an active firm does not exit. Equations (8.18) and (8.19) show 

that uncertainty widens this Marshallian range of inaction, if (δ/r)*(-

1))>1and (δ/r)*(--1))<=1. 

Figure 8.1 

 

Figure 8.1 shows that with C=1, r=4%, δ=4%, =20%, K=5, A=25, the hysteresis 

range is 1.20 with Marshall investment/abandonment rules, and 2.40 considering the 

real options to enter and exit given stochastic prices. The hysteresis ranges under 

both investment rules are sensitive to changes in the parameter values (except 

prices). 
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A B C

MARSHALLIAN ENTER/EXIT PRICES

SIMPLE OPTIONAL ENTER/EXIT PRICES
INPUT

P 2

Operating cost C 1

Investment K 5

Abandon  A 25

Interest Rate 0.04

Asset Yield 0.04

Asset Growth 0.00

Asset Volatility 0.20

OUTPUT

 2.00 0.5-(B8-B9)/(B11^2)+SQRT(((B8-B9)/(B11^2)-0.5)^2 + 2*B8/(B11^2))

 -1.00 0.5-(B8-B9)/(B11^2)-SQRT(((B8-B9)/(B11^2)-0.5)^2 + 2*B8/(B11^2))

 WK 1.200 B5+B8*B6

 WA 0.000 IF((B5-B8*B7)>0,B5-B8*B7,0)

 PK 2.400 (B8-B10)/B8*B13/(B13-1)*B15

 PA 0.000 (B8-B10)/B8*(-B14/(-B14+1))*B16

WK-WA 1.200 B15-B16

PK-PA 2.400 B17-B18

(PK-PA)/(WK-WA) 2.000 B20/B19
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Figure 8.2 

 

 

 

In Figure 8.2, the standard parameter values are C=1, K=5, A=25, r=4%, δ=4%, 

and =20%, assumed to be independent. Figure 8.2 shows that hysteresis increases 

as a function of C under the real option rules, and, of course, under Marshall, since 

WK is C plus or minus a constant rK or rA.  Hysteresis is a positive function of K 

under both rules.  Note that C-rA<=0, if r>=.04.   

             

Figure 8.3 shows that hysteresis is not always a positive function of interest rates 

under the stochastic rule, if =r-u and u is constant, but a negative function of 

payout, except under Marshall, since asset yield is not considered in that model 
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Figure 8.3 

 

 

directly.  Marshall hysteresis is insensitive to changes in asset volatility, since that 

model is deterministic, but real option hysteresis is highly sensitive.  As Dixit 

(1989) notes in his footnote 9, stochastic hysteresis is greater than deterministic 

hysteresis if r/u >.    
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The constraints for the previous analysis require essentially no abandonment, 

although it is assumed under both the stochastic and deterministic rules the 

abandonment trigger is 0.  When there is an abandonment option and initially (C-

rA)>0, these simple stochastic rules are not applicable.  Figure 8.4 shows the 

numerical solution for the four equations with an abandonment option, using the 

Dixit (1989) parameters with abandonment cost A=0, with the derived stochastic 

triggers. 

     Figure 8.4 

 

 

Now that operating cost C > rA, the Marshallian exit trigger is the operating cost, 

but equations 8.18 and 8.19 are no longer valid, and there is no closed form 

solution for the stochastic case.  The stochastic entry trigger is higher than the 

deterministic trigger (but lower than the hypothetical simple stochastic trigger).  

The stochastic exit trigger is lower than the deterministic trigger (but higher than 

the hypothetical simple stochastic trigger).   

 

In the next several figures the standard parameters are: P=range of 1 to 20 (or to 9 

in Figure 8.10), C=3, K=100, A=3, r=6%, δ=3% and =30%.  Figure 8.5 shows 

that both the real option to invest and the Marshall valuation (NPV) are positive 
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A B C D E

Entry - Exit (STOCHASTIC MODEL) MARSHALLIAN TRIGGERS
 INPUT INPUT

P= 2 P 2

K= 4 Investment K 4

C= 1 Operating cost C 1

A= 0 Abandon  A 0

r= 0.025 Interest Rate 0.025

 0.025 Asset Yield 0.025

 0.1 Asset Volatility 0.1

 2.791 0.5-((B7-B8)/(B9^2))+SQRT(((((B7-B8)/(B9^2))-0.5)^2)+(2*(B7/(B9^2))))  2.79

 -1.791 0.5-((B7-B8)/(B9^2))-SQRT(((((B7-B8)/(B9^2))-0.5)^2)+(2*(B7/(B9^2))))  -1.79

OUTPUT

Vo(P) 44.053 B17*(B3^B11) OUTPUT

VK(P) 42.219 B18*(B3^B12)+(B3/B8)-(B5/B8)  WK 1.100

 WA 1.000

A1 6.364  WK-WA 0.100

B2 7.681  

 PK 1.467   PK 1.714

 PA 0.766   PA 0.642

PK-PA 0.701 PK-PA 1.072

Eq.8.14 0.000 (-B17*(B19^B11))+(B18*(B19^B12))+(B19/B8)-(B5/B8)-B4

Eq.8.15 0.000 (-B11*B17*(B19^(B11-1)))+(B12*B18*(B19^(B12-1)))+(1/B8) (PK-PA)/(WK-WA) 10.723

Eq.8.16 -0.001 (-B17*(B20^B11))+(B18*(B20^B12))+(B20/B8)-(B5/B8)+B6

Eq.8.17 0.000 (-B11*B17*(B20^(B11-1)))+(B12*B18*(B20^(B12-1)))+(1/B8)

SOLVER Set B22=0, and B23=B24=B25=B22, CHANGING B17:B20. C-rA 1



    116 

functions of price (at unitized volume), but the real option value is always positive. 

The option to invest is tangential to the intrinsic option value at the investment 

trigger price.  

          Figure 8.5 

 

 

As shown in Figures 8.6 and 8.7, according to the basic investment-abandonment 

model, the values of the operating firm  )(PVK = 6.664 when P=1, and 617.833 

when P=20, which is slightly more than 616.67, the present value (PV) of P 

discounted at the net cost of carry less operating costs discounted at the riskfree 

interest rate. The option to invest for the prospective asset owner is 9.567 even 

when P=1, but is equal to the intrinsic option value (PV-K) when P>PK. The time 

value of the option to invest is equal to V0(P) when PV<K, declining to nil as P 

approaches PK.   

  

           Figure 8.6 
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INPUT

P Price 1 2.5 5 7.5 10 12.5 15 17.5 20

K Initial Investment 100

C Operating Cost 3

A Abandonment Cost 3

r Riskless Rate 0.06

δ Cost of Carry 0.03

σ Volatility 0.3

 OUTPUT  

β1 Eq. 8.6 1.333

β2 Eq. 8.7 -1.000

Vo(P) Eq. 8.4 9.567 32.462 81.799 140.454 206.120 277.545 353.923 434.681 516.667

VK(P) Eq. 8.5 6.664 42.665 121.333 203.111 285.666 368.533 451.555 534.666 617.833

           

A1 Value Coefficient of the Option to Invest 9.563

B2 Value Coefficient of the Option to Abandon 23.330

P(K) Price Trigger for New Investment 17.724

P(A) Price Trigger to Abandon 1.073

PV-K -116.667 -66.667 16.667 100.000 183.333 266.667 350.000 433.333 516.667

TIME VALUE OF OPTION TO INVEST 9.567 32.462 65.132 40.454 22.787 10.879 3.923 1.348 0.000
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          Figure 8.7 

     

 

However, consistent with general call and put option pricing, both the option to 

invest and the option to abandon increase with increases in the expected P 

volatility, as shown in Figure 8.8 (with P=5, slightly “in the money” for the option 

to invest).  The optimal trigger for exercising the option to invest increases, and 

the trigger for exercising the option to abandon decreases, with increases in 

expected P volatility, given these parameters. 

 

             Figure 8.8 

 

 

 

NPV-E -119.667 -69.667 13.667 97.000 180.333 263.667 347.000 430.333 513.667

-200

-100

0

100

200

300

400

500

600

1 2.5 5 7.5 10 12.5 15 17.5 20

V
a

lu
e

s

Price

Investment-Abandonment Model

OPTION TO INVEST

OPTION TO ABANDON

PV-I

0

20

40

60

80

100

120

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

V
a

lu
e

P Volatility

Basic Investment-Abandonment Options 
as Function of Volatility

OPTION TO INVEST

OPTION TO ABANDON



    118 

Note this model does not allow for a time lag between commissioning and the 

completed construction of a new asset, or for more active (enlarged flexibility) 

management of the asset. In this simplistic model, the options of the operating 

company are confined to moving to one alternative state, which clearly cannot be 

sufficient to accommodate the complexity of decision-making within a dynamic 

environment. 

 

 

8.4  MULTIPLE SCALE OPTIONS 

 

Let us consider more appropriate and sequentially ordered management actions 

after the initial investment.  A firm converts from being idle (with, however, a 

proprietary option to build), to investing in and operating a facility.  Then if P 

falls, there is an option to contract, reducing costs (and reducing services and 

prices).  If P then increases, the next option is to revert to full service.  If P falls 

instead, the next option is abandonment, or switching to an alternative use.  Thus 

up to four options are considered, each with trigger prices, exercise costs, and 

usually different prices and operating costs in each state (see Figure 8.9, which 

includes additional actions of suspension, expansion, and reversion to previous 

states). 

 

After providing the appropriate differential equation for each state, a numerical 

solution is proposed for the set of equations, which depends on the coefficients for 

state valuation and derived price triggers.  The “four” states model developed in 

this section encompasses an orderly progression from the states of being idle, fully 

operational, contracted or abandoned
4
.  Then there is one reversion from 

contracted to the previous state. 

 

 

                                                 
4
 “Complete” states might include selling properties (or ships or planes), or acquiring properties, as 

well as shifting from idle to suspension, contraction or expansion directly, and other reversions to 

and from other states, if feasible and economic. 
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                      Figure 8.9 

  Asset Strategic States and Actions  

 

 

 

Additional symbols are: 

E=the downsizing investment costs; 

R = lump-sum cost of reverting to the previous state;  

C1=annual operating cost in the contracted state;  
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ς =price (P) multiplier in the contracted state, ς <1; 

PC = P threshold that motivates the owner to contract, reducing costs; and 

PR  = P threshold that justifies reversion to full service operations. 

There is an additional valuation function,  VC(P) = value of a contracted operating 

facility, and an additional differential equation that the valuation functions must 

satisfy: 

 
CONTRACT 

0)()()()( 1

22
2

1  CPPrVPVPrPVP CCC                    (8.22) 

 

The solution for this equation is: 

 

rCPPDPDPVC //)( 121
21  

                                              (8.23) 

 

In equations (8.4), (8.12) and (8.23), A1 is the value coefficient of the option to 

invest in the “full service” state (which itself includes two options), B2 is the value 

coefficient of the option to contract, D1 is the value coefficient of the option to 

revert to the full service operating state and D2 is the value coefficient of the option 

to abandon.  All of the coefficients are constrained to be positive (purchased or 

held, versus written, options always have non-negative values).  In equation (8.23), 

the last term represents the perpetual net value of contracted state cash flows. Each 

of these four options has an exercise cost: the option to invest K, the option to 

contract E, the option to revert to full service from the contracted state R, and the 

option to abandon A.  It is expected that there is a descending order of the triggers 

that signal the optimal actions for moving to each state, so that PK>PR>PC>PA>0, 

although the level and order of the normal service and reduced service reversion 

triggers depend on the other parameters including the exercise costs of the 

reversion.  Optimal switching to four alternative states is based on four optimal 

triggers. Investment in new property takes place as soon as P rises to PK. If the firm 

already holds a property in operation and P falls to a lower level PC, management 

will choose to contract, that is reduce costs to C1 , and P is reduced to ςP  because 
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of the reduced service or quality.  If P falls even further to a lower threshold PA, the 

property owner will be better off by abandoning the property. Alternatively, if P 

rises to a level PR rather than fall to PA, the operation will revert to full service. 

Assume that the property is not yet constructed and P starts from a low initial value.  

The investment costs K and downsizing costs are constant, as are the operating 

costs C1  and C, with C1 < C.  Furthermore it is assumed that the full service price 

will be reduced to ςP in the contracted state, and that first the normal operating state 

must be constructed.  The firm is idle initially over the range (0, PK) and in the 

contracted state over the range (PA, PR).    The value matching condition is  

ErCPPDPDrCPPB CCCCC  //// 1212
212                           (8.24) 

and the smooth pasting condition is 

 
//1

1

22

1

11

1

22
212 


CCC PDPDPB
                                           (8.25) 

 which when simplified are equations (8.26) and (8.27). 

   

0/)(/)1()( 1221
21  ErCCPPDBPD CCC                           (8.26) 

0/)1()(
1

222

1

11
21 
  

CC PDBPD
                                             (8.27) 

0/)(/)1()( 1221
21  RrCCPPBDPD RRR 

                           (8.28) 

0/)1()(
1

222

1

11
21 
  

RR PBDPD                                                 (8.29) 

0//)( 1211
21  ArCPPDPAD AAA                                                 (8.30) 

0/)(
1
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1
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2! 
  

AA PDPAD                                                          (8.31) 

  

 In addition to equations (8.16) and (8.17), equations (8.28) and (8.29) derive from  

the conditions at the reversion threshold, whereas equations (8.30) and (8.31) are  

 based on the abandonment threshold. The numerical solution should satisfy 

PK>PR>PC>PA>0, and the option value coefficients should be positive. 

 

Not surprisingly, in the four options model the trigger price thresholds that justify 

new investment are similar to the ones obtained from the two options model. Figure 
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8.10 shows that the company should invest in new property, as soon as P rises 

above 17.720 which is slightly lower than in the simple two option model.    

 

    Figure 8.10 

 

Solve the eight simultaneous equations in cells C33:C40 by setting the absolute sum 

in cell C41=0, by changing the unknowns in cells C24:C31.  P need to fall below the 

exit thresholds that have been identified previously to motivate abandonment. This 

reflects the fact that the property owner now has the additional option to contract 

and operate a reduced service for the property prior to abandonment. A restaurant 

might add tables in less favourable locations; an airline might bear with more 

customer unhappiness as seats are smaller, free meals eliminated, and flights even 

more overbooked; a hotel might reduce service staff (downgrade to Three Star from 

Four Star) while reducing room rates. There are new derived threshold price triggers 

for the contracting and reversion to normal operating state decisions.  Note that the 

coefficient of the abandonment option is sharply reduced, but the coefficient for the 

contracting option is large.  The value function of the contracted state includes the 

option to revert to normal operation or abandonment at the optimal time. At high 
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A B C D E F G H I J K

Invest, Revert, Contract and Abandonment
INPUT

P Price 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

K Initial Investment 100.00

C Operating Cost 3.00

r Riskless Rate 0.06

δ Cost of Carry 0.03

σ Volatility of P 0.30

E Cost of Contracting 5.00

A Abandonment Cost 3.00

R Cost for Reversion:FS from Contraction 2.00

C1 Reduced Operating Cost in Contraction 1.50

ς Contraction Multiplier 0.60

β1 Eq. 8.6 1.333

β2 Eq. 8.7 -1.000

V0(P) Eq. 8.4 9.564 24.100 41.381 60.728 81.771 104.274 128.067 153.024 179.046

VK(P) Eq. 8.12 4.013 27.006 56.893 88.503 120.803 153.447 186.288 219.252 252.298

VC(P) Eq.8.23 7.643 31.611 59.558 89.233 120.065 151.799 184.292 217.451 251.206

A1 Value Coefficient of the Option to Invest 9.564

B2 Value Coefficient of the Option to Contract 20.679

D1 Value Coefficient of the Option to Revert:FS1 5.094

D2 Value Coefficient of the Option to Abandon 7.549

P(K) Price Trigger for New Entry 17.720

P(R) Price Trigger to Revert 7.134

'P'('C) Price Trigger to Contract 1.549

P(A) Price Trigger to Abandon 0.717

          

Eq.8.16 0.0 (C24)*(C28^C17)-C25*(C28^C18)-(C28/C10)+(C8/C9)+C7

Eq.8.17 0.0 C17*(C24)*(C28^(C17-1))-C18*C25*(C28^(C18-1))-(1/C10)

Eq.8.26 0.0 (-C26)*(C30^C17)+(C25-C27)*(C30^C18)+((1-C16)*C30)/C10-((C8-C15)/C9)+C12

Eq.8.27 0.0 C17*(-C26)*(C30^(C17-1))+C18*(C25-C27)*(C30^(C18-1))+(1-C16)/C10

Eq.8.28 0.0 (C26)*(C29^C17)+(C27-C25)*(C29^C18)-(1-C16)*C29/C10+(C8-C15)/C9+C14

Eq.8.29 0.0 C17*(C26)*(C29^(C17-1))+C18*(C27-C25)*(C29^(C18-1))-(1-C16)/C10

Eq.8.30 0.0 (C26-C24)*(C31^C17)+C27*(C31^C18)+((C16*C31)/C10)-C15/C9+C13

Eq.8.31 0.0 C17*(C26-C24)*(C31^(C17-1))+C18*C27*(C31^(C18-1))+(C16/C10)

SOLVER: SET C41=0, CHANGING C24:C31 0.0

V0(P) Eq. 8.4 C24*(C6^C17)

VK(P) Eq. 8.12 C25*(C6^C18)+(C6/C10)-(C8/C9)

VC(P) Eq.8.23 C26*(C6^C17)+C27*(C6^C18)+(C16*C6/C10)-(C15/C9)
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current P, there is little option value for downsizing from the normal operation to a 

contracted state, or for the contracted operation to abandonment, as expected. 

However, at low current P, at these reversion, contracting and abandonment costs, 

there may be significant option value for these states.  

 

Increases in operating cost result in slightly decreased real call (investment, 

reversion) option values, increased real contracting value, and increases in 

reversion and contracting triggers.  Increases in the reduced operating cost in the 

contracting state decrease the contracting option, and increase the abandonment 

option and trigger.  Increases in the contraction multiple result in increased 

contracting option value and trigger, and decreased reversion and abandonment 

option values.  Increases in K reduce the option to invest, and increase the 

investment trigger.   

 

Increases in interest rates, the net cost of carry and volatility result in changes in β1 

and β2. Interest rate increases reduce β1 and increase β2, while net carrying costs 

have the opposite effect.  Increases in volatility reduce β1 and increase β2. 

Increases in interest rates increase call (invest, revert) options, and significantly 

decrease put (contract, abandon) options, with an opposite effect for net carrying 

costs.  Increases in volatility increase all option values, especially contracting and 

abandonment, but increase call triggers and decrease put triggers. 

 

SUMMARY 

 

This chapter develops a real perpetual American option model, extended to multiple 

states, starting with entry plus exit, then adding contracting and reversion to a full 

operating state.  The solution for a single state investment choice can be easily 

calculated, as can the Marshallian investment rules.  More complex states require 

numerical solutions, which are feasible in spreadsheets.   
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EXERCISES 

 

EXERCISE 8.1 Curiously the Real Options (RO) class exit cost will always 

exceed the value of the class on-going cost. If you take the class, there is no exit. 

Once committed, forever committed.  Current perpetual benefits to a student 

taking RO are believed to be (P) 2 per annum, class annual cost (C) is 1 in effort in 

perpetuity given the mental and physical stress, benefit volatility=20%, benefit 

yield 4% (δ), riskless rate 4% (r), once off sunk entry cost is 5 (K) and exit 25 (A).  

Should you enter the class now?  What if you were following Professor Marshall? 

 

EXERCISE 8.2 Prove that your solution in Exercise 8.1 solves the idle equation 

8.4 (including 8.10 and 8.11).   

    

EXERCISE 8.3   Show the real option versus Marshallian hysteresis over a range of 

operating costs from .8 to 1.0?  Why might you be reluctant to change (if you could) 

over a wider range with higher costs if you were aware of real options theory than if 

you were stuck in Cambridge with Professor Marshall?   

 

PROBLEMS 

 

PROBLEM 8.4      Suppose you have the option of entering or leaving the RO class 

at a pre-specified entering/exiting cost. Arriving at the class, view the quality and 

quantity of the lectures, your prospects and entertainment value and alternative uses 

of your time and effort.  After all, if you leave the class, and the supposed quality of 

the lectures improves, and quantity declines, or your prospects and alternatives 

change, you can try this class again.  Current perpetual benefits to a student taking 

RO are believed to be 2, class cost .4 in effort in perpetuity given the mental and 

physical stress, entry cost 5, exit 2, benefit volatility=20%, benefit yield 4%, riskless 

rate 4%.  When should you enter the class?  If in the class, if the perceived benefits 

decline, when should you exit?  
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PROBLEM 8.5   You have the opportunity of investing in a 100 room “suite-hotel” 

for $100,000 per room.  Yearly rents are currently $10,000 per room, 90% 

occupancy is anticipated, and annual operating costs are $3000 per room. Expected 

volatility of annual rent per room capacity is 30%, interest rates 10%, and the 

required property yield is 5%.  This facility can be switched once into a permanent 

residence accommodation worth $75,000 per room, but the switching-refurbishment 

costs are $20,000 per room.  What is this opportunity worth and at what expected 

hotel rental level should you take up the opportunity ? At what rental level should 

you switch the facility use? 

 

PROBLEM 8.6   What if there is the feasible alternative of downsizing the hotel 

facility to half capacity (costs $15,000 per room), with operating costs reduced to 

$1000 per room, with the possible reversion to full capacity (which costs $10,000 

per room), but it costs $5000 per room to abandon the hotel? 
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APPENDIX 8A 

 

 

If there is no abandonment option, then B2=0, equations 8.14 and 8.15 are: 
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From A1 
 

1/)//(1

 KK PKrCPA                                                                               (A3) 
 
Substitute  A3 into A2  

 


  1

]/)//[(
1

1
11 


KKK PPKrCP           (A4) 

 

)1()/( 11   KPKrC             (A5) 

 

Note that   ,/1
1

1 1





K

K
K

P

P
P





  

and,
11 1

1

1

1
















  

KrCrWK  //   

 

)(
1

1

1 rKC
r

P
K










          (8.18) 

 

Some of the partial derivatives are easy. 
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